Tuesday, 4 September 2012

Robotic Surgery





Overview





Technology is revolutionizing the medical field with the creation of robotic devices and complex imaging. Though these developments have made operations much less invasive, robotic systems have their own disadvantages that prevent them from replacing surgeons. Minimally invasive surgery is a broad concept encompassing many common procedures that existed prior to the introduction of robots, such as laparoscopic cholecystectomy or gall bladder excisions. It refers to general procedures that avoid long cuts by entering the body through small (usually about 1cm) entry incisions, through which surgeons use long-handled instruments to operate on tissue within the body. Such operations are guided by viewing equipment (i.e. endoscope) and, therefore, do not necessarily need the use of a robot. However, it is not incorrect to say that computer-assisted and robotic surgeries are categories under minimally invasive surgery.
Computer-assisted surgery (CAS), also known as image-guided surgery, surgical navigation, and 3-D computer surgery, is any computer-based procedure that uses technologies such as 3D imaging and real-time sensing in the planning, execution and follow-up of surgical procedures. CAS allows for better visualization and targeting of sites as well as improved diagnostic capabilities, giving it a significant advantage over conventional techniques. Robotic surgery, on the other hand, requires the use of a surgical robot, which may or may not involve the direct role of a surgeon during the procedure. A robot is defined as a computerized system with a motorized construction (usually an arm) capable of interacting with the environment. In its most basic form, it contains sensors, which provide feedback data on the robot’s current situation, and a system to process this information so that the next action can be determined. One key advantage of robotic surgery over computer-assisted is its accuracy and ability to repeat identical motions.


Further division



Robotic surgery can be further divided into three subcategories depending on the degree of surgeon interaction during the procedure: supervisory-controlled, telesurgical, and shared-control. In a supervisory-controlled system, the procedure is executed solely by the robot, which will act according to the computer program that the surgeon inputs into it prior to the procedure. The surgeon is still indispensable in planning the procedure and overseeing the operation, but does not partake directly. Because the robot performs the entire procedure, it must be individually programmed for the surgery, making it extremely expensive to gather several images and data for one patient. A telesurgical system, also known as remote surgery, requires the surgeon to manipulate the robotic arms during the procedure rather than allowing the robotic arms to work from a predetermined program. Using real-time image feedback, the surgeon is able to operate from a remote location using sensor data from the robot. Because the robot is still technically performing the procedure, it is considered a subgroup of robotic surgery. The da Vinvi® Surgical System, the current leading device in this field, belongs to this section of robotic surgery. The third shared-control system has the most surgeon involvement. The surgeon carries out the procedure with the use of a robot that offers steady-hand manipulations of the instrument. This enables both entities to jointly perform the tasks.
Before these procedures can be carried out, robotic surgery requires the use of computer imaging to diagnose and perform the operation. These imaging modalities can generate either 3-D figures through computed tomography (CT) and magnetic resonance imaging (MRI) or 2-D ones through ultrasonography, fluoroscopy, and X-ray radiography. Out of the various methods of imaging, the main one in use is computer tomography (CT).
Because computer-assisted and robotic surgeries are so integrated, the advanced imaging techniques and robotics we explore will be classified as robotic surgery, or computer-assisted robotic surgery. Even if nothing is ever one hundred percent safe, devices have the potential to be fatal if they malfunction. Therefore, considerable consternation exists in the medical field over these equipment. Industries have attempted to reduce these risks through redundant sensors and robot movement barriers, but these safety features increase cost, making them inaccessible to some physicians. Nevertheless, robotic arms can access the body much easily through the small incisions than a surgeon can, and can integrate large amounts of data and images to access areas deep within the body with precision. And though they cannot process qualitative information to make judgments during the surgery, they are still able to filter out hand tremors and scale the surgeon’s large movements into smaller ones in the patient



As will be seen, robots do not actually replace humans but rather improve their ability to operate through the small incisions. In programming these devices, considerable effort is put into creating proper algorithms, accurate sensors, and improved user interfaces. Technology is becoming more and more integrated into the medical system. From imaging systems to preprogrammed robots, each specialty is finding benefits from these advances. In this website, we will explore the influence of computer-assisted surgery on neurosurgery, orthopedics, urology, and cardiology as well as look into current trends and future outlooks for this growing field in medicine.

 


Friday, 31 August 2012

World's First Human-Robot Hybrid




Kevin Warwick World's First Human-Robot


In 1998, Kevin Warwick, a Professor of Cybernetics at Reading University, became the world’s first cyborg. Well, to be exact, he had a radio frequency ID implanted in his arm. As a result, he can turn on lights by snapping his fingers; once he let his wife’s brain waves take control of his body (she’s also cybernetic).
This isn’t just for fun: Warwick is certain that without upgrading, humans will someday fall behind the advances of the robots they’re building – or worse. “Someday we’ll switch on that machine, and we won’t be able to switch it off.” That might explain why he has very little technology at home, and counts The Terminator among his biggest influences. He doesn’t want to become a robot; he wants to be a better human.
Augmenting human ability, not transforming into an automaton, is, after all, the basis of the “cyborg.” One of the earliest uses of the term was by scientists Manfred E. Clynes and Nathan S. Kline in 1960, when describing their idea of an enhanced human being who could survive in extraterrestrial environments.



Cyborg



A Cyborg is a Cybernetic Organism, part human part   machine.



"Cyborg" is a science-fictional shorting of "cybernetic organism". The idea is that, in the near future, we may have more and more artificial body parts - arms, legs, hearts, eyes - and digital computing and communication supplements. The logical conclusion is that one might become a brain in a wholly artificial body. And the step after that is to replace your meat brain by a computer brain.

 

 

 


Types of Cyborgs

"According to the editors of The Cyborg Handbook, cyborg technologies take four different forms: restorative, normalizing, reconfiguring, and enhancing Cyborg translators are currently thought of almost exclusively as enhancing: improving existing translation processes by speeding them up, making them more reliable and cost-effective. And there is no reason why cyborg translation should be anything more than enhancing".

 



 

Thursday, 30 August 2012

Human Teleportation





We are years away from the development of a teleportation machine like the transporter room on Star Trek's Enterprise spaceship. The laws of physics may even make it impossible to create a transporter that enables a person to be sent instantaneously to another location, which would require travel at the speed of light.
For a person to be transported, a machine would have to be built that can pinpoint and analyze all of the 1028atoms that make up the human body. That's more than a trillion trillion atoms. This machine would then have to send this information to another location, where the person's body would be reconstructed with exact precision. Molecules couldn't be even a millimeter out of place, lest the person arrive with some severe neurological or physiological defect.


In the Star Trek episodes, and the spin-off series that followed it, teleportation was performed by a machine called a transporter. This was basically a platform that the characters stood on, while Scotty adjusted switches on the transporter room control boards. The transporter machine then locked onto each atom of each person on the platform, and used a transporter carrier wave to transmit those molecules to wherever the crew wanted to go. Viewers watching at home witnessed Captain Kirk and his crew dissolving into a shiny glitter before disappearing, rematerializing instantly on some distant planet.
If such a machine were possible, it's unlikely that the person being transported would actually be "transported." It would work more like a fax machine -- a duplicate of the person would be made at the receiving end, but with much greater precision than a fax machine. But what would happen to the original? One theory suggests that teleportation would combine genetic cloning with digitization.
In this biodigital cloning, tele-travelers would have to die, in a sense. Their original mind and body would no longer exist. Instead, their atomic structure would be recreated in another location, and digitization would recreate the travelers' memories, emotions, hopes and dreams. So the travelers would still exist, but they would do so in a new body, of the same atomic structure as the original body, programmed with the same information.
But like all technologies, scientists are sure to continue to improve upon the ideas of teleportation, to the point that we may one day be able to avoid such harsh methods. One day, one of your descendents could finish up a work day at a space office above some far away planet in a galaxy many light years from Earth, tell his or her wristwatch that it's time to beam home for dinner on planet X below and sit down at the dinner table as soon as the words leave his mouth.